BRUSHLESS DC MOTOR (BLDC) FUNTAMENTAL FEATURES

Brushless DC (BLDC) motors are one type of motors that have won more popularity in recent years.

Today, BLDC motors are used in industries such as: Automobile, Aerospace, Consumer, Medical, and automation equipment and instrumentation.

BLDC motors have the characteristic that they do not use brush to transfer energy; in this case the commutation is done electronically. This feature eliminates the major problem with the conventional DC brushed motors, which produce friction and decrease performance, emit heat, are noisy, periodic maintenance.

BLDC motors have many advantages compared with brushed DC motors some of them are:

- Higher speed with rated load
- Higher dynamic response
- Higher efficiency
- Longer life
- Less noise

BLDC motors produce more out-put power per frame size than brushed DC motors making them ideal for limited access areas.

By the other hand BLDC have two disadvantages:

- 1.- They have higher cost
- 2.- The control is complex and expensive

Despite the complexity of the control, MASTER INGENIEROS has over 10 year of BLDC motors experience.

	BLDC Motor	Brushed DC Motor
Conmutation	Electronic commutation based on Hall position	Brushed commutation
	sensors	
Maintenance	Less required due to absence of brushes	Periodic maintenance is required
Life	Longer	Shorter
Speed/Torque	Flat – Enables operation at all speeds with rated	Moderately flat – At higher speeds, brush
Characteristics	load.	friction increases, thus reducing useful
		torque.
Efficiency	High – No voltage drop across brushes.	Moderate.
Output Power/	High – Reduced size due to superior thermal	Moderate/Low – The heat produced by the
Frame Size	characteristics. Because BLDC has the windings on	armature is dissipated in the air gap, thus
	the stator, which is connected to the case, the heat	increasing the temperature in the air gap
	dissipation is better.	and limiting specs on the output
		power/frame size
Rotor Inertia	Low, because it has permanent magnets on the	Higher rotor inertia which limits the dynamic
	rotor. This improves the dynamic response.	characteristics.
Speed Range	Higher – No mechanical limitation imposed by	Lower – Mechanical limitations by the
	brushes/commutator.	brushes.
Electric Noise	Low.	Arcs in the brushes will generate noise
Generation		causing EMI in the equipment nearby.
Cost of Building	Higher – Since it has permanent magnets, building	Low.
	costs are higher.	
Control	Complex and expensive.	Simple and inexpensive.
Control	A controller is always required to keep the motor	No controller is required for fixed speed; a
Requirements	running. The same controller can be used for	controller is required only if variable speed is
	variable speed control.	desired.